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Abstract. The study of the average of Schur polynomials over a Stieltjes-
Wigert ensemble has been carried out in [J. Math. Phys. 48, 023507 (2007)]
(arXiv:hep-th/0609167), where it was shown that it is equal to quantum di-
mensions. Using the same approach, we extend the result to the biorthogonal
case. We also study, using the Littlewood�Richardson rule, some particular
cases of the quantum dimensions result. Finally, we show that the notion of Gi-
ambelli compatibility of Schur averages, introduced in [ Adv. Appl. Math. 37,
209 (2006)] (arXiv:math-ph/0501123), also holds in the biorthogonal setting.

1. Introduction

The study of random matrix ensembles is a subject of considerable mathematical
interest, with applications in di¤erent areas of physics [1, 2, 3]. The de�nition of
the joint probability distribution P (M) of the matrix elements of a N by N matrix
M is [1]

(1.1) P (M) = CN exp[�TrV (M)] ;

with an arbitrary V (M) ; provided existence of the partition function C�1N . The
integration of (1:1) over the parameters related to the eigenvectors, leads to the
well-known joint probability distribution of the eigenvalues [1]

(1.2) P (x1; :::; xN ) = CN
Y
i<j

jxi � xj j�
NY
i=1

exp[�V (xi)] :

We can see in (1:2) that level repulsion described by the Vandermonde determinant
is originated from the Jacobian, that appears when passing from the integration over
independent elements of the matrix ensemble to the integration over the smaller
space of its N eigenvalues. The parameter �; with values 1; 2 or 4 describe the
symmetry of the ensemble (orthogonal, unitary and symplectic, respectively). In
[4], a one parameter generalization of the orthogonal polynomial ensembles [1, 5] is
studied. The joint probability densities of these ensembles have the form

(1.3) P (x1; : : : ; xN ) = CN
NQ
i=1

!(xi)
Q
i<j

�
(xi � xj)(x�i � x�j )

�
;

where � is a �xed positive number. These are biorthogonal ensembles and the
usual orthogonal polynomial ensembles correspond to � = 1. In [4], the classical
cases, corresponding to Hermite, Laguerre and Jacobi polynomials were studied.
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In analogy with the usual Hermitian case (� = 1) [1], one can study (1:3) by
considering a pair of biorthogonal polynomials

(1.4)
Z
! (x)Yn (x; k)Zm (x; k) dx = hn;k�n;m;

with Z
Yn (x; k)x

�j! (x) dx = �(�)n �n;j ;(1.5) Z
Zn (x; k)x

j! (x) dx = �(�)n �n;j :

In [6], we studied the biorthogonal ensemble characterized by a log-normal weight
! (x) = e��

2 log2 xi . The orthogonal polynomials associated to this weight are the
Stieltjes-Wigert polynomials [7]. We were motivated by the appearance of the
Stieltjes-Wigert random matrix model in Chern-Simons theory [8, 9]. The model is

(1.6) ZP;Q =

Z NY
i=1

e�u
2
i =2gs

Y
i<j

�
2 sinh

ui � uj
2P

��
2 sinh

ui � uj
2Q

�
dui
2�
:

Note that (1:3) is exactly the type of ensemble that (1:6) leads to, since

ZP;Q =

Z Y
i

dui
2�
e�u

2
i =2gs

Y
i<j

(2 sinh(
ui � uj
2P

))(2 sinh(
ui � uj
2Q

)

= q�
N�2

2

Z Y
i

dyi
2�
e��

2 log2 yi
Y
i<j

(y
1=P
i � y1=Pj )(y

1=Q
i � y1=Qj );(1.7)

with ui = log e
�
2�2 yi; �

2 = 1
2gs

and � = �1� (P+Q)(N�1)
2PQ : Finally, with yi = e

P�1
2�2P xPi

and some rewriting

ZP;Q = PNe�
N
4�2

( 1P +
(P+Q)(N�1)

2PQ )2
Z Y

i

dxi
2�
e��

2P 2 log2 xi
Y
i<j

(xi�xj)(xP=Qi �xP=Qj );

which is of the form (1:3) with the log-normal (Stieltjes-Wigert) weight function
! (x) = e��

2P 2 log2 xi . The corresponding q-parameter is then q = e�
1

2�2P2 = e�
gs
P2 :

In [6] we mainly studied two problems:

(1) The biorthogonal ensemble itself: the construction of the Stieltjes-Wigert
biorthogonal polynomials and the computation of ZP;Q:

(2) The ordinary Stieltjes-Wigert Hermitian ensemble (P = Q = 1 above) with
the insertion of a Schur polynomial.

Recall that Schur polynomials s� [12, 13] constitute a basis of symmetric func-
tions in a given set of variables x = (xi) and are indexed by Young diagrams �. In
particular, we showed

< s�(M) >w=

Z
[dM ]s�(M)e

� 1
2gs

Tr(logM)2(1.8)

= q�nj�j�
1
2C

U(n)
� D�,
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where CU(n)� is the Casimir of U(N) and the last term are the quantum dimensions,
de�ned by the q-hook formula [11]

(1.9) D� �
Y
x2�

bn+ c(x)c
bh(x)c ;

where bnc =
�
qn=2 � q�n=2

�
=
�
q1=2 � q�1=2

�
denotes the q-number and for each

box x = (i; j) of the diagram h(x) � �i + �
0
j � i � j + 1 is the hook-length and

c(x) � j � i the content of x. If the variables x are seen as eigenvalues of some
matrix M 2 sln then s�(M) � Tr�(M) is the trace of M in the representation
associated to �. The Casimir of the representation labeled by the Young diagram
� and j�j its total number of boxes is

(1.10) C
U(n)
� = (n+ 1)j�j+

X
i

(�2i � 2i�i):

In the following Section, we study the problem that results from combining (1) and
(2) above. That is to say, the computation of the average of a Schur polynomial
over a biorthogonal ensemble (1:3) with a log-normal weight ! (x) = e��

2 log2 xi . In
addition to [6], other random matrix averages of Schur polynomials have also been
studied in [14, 15, 16, 17, 18, 19], with di¤erent techniques and motivations. We
will also analyze simple particular cases of the quantum dimensions result in [6].
In Section 4, we will study a basic property of a biorthogonal ensemble with a

generic weight function and a Schur polynomial. More precisely, a special property
of an orthogonal polynomial ensemble with a Schur polynomial is the Giambelli
compatibility, introduced and analyzed in detail in [10]. We shall show that the
same property holds if we deal with biorthogonal ensembles. We now brie�y intro-
duce the notion of Giambelli compatibility. The partitions � that parametrize Schur
functions can be written in Frobenius notation (see [20] for a simple explanation of
this notation):

(1.11) � = (p1; : : : ; pdjq1; : : : ; qd):
The Schur functions satisfy a basic identity, called the Giambelli formula

(1.12) s(p1;:::;pdjq1;:::;qd) = det
�
s(pijqj)

�d
i;j=1

:

In [10], it is shown that the Giambelli formula remains invariant under the averaging
of the Schur function over a generic orthogonal polynomial ensemble

(1.13)


s(p1;:::;pdjq1;:::;qd)

�
= det

�

s(pijqj)

��d
i;j=1

:

Since we are studying a biorthogonal ensemble, we shall show in Section 4 that the
method of [10] extends in a straightforward way to the biorthogonal case and hence,
the Giambelli compatibility property also holds for such an ensemble. In contrast
to Section 2 and Section 3, the discussion considers a generic weight and does not
focus on the Stieltjes-Wigert model.

Acknowledgements. I thank Alexei Borodin for his interest in the previous
and the present work and for pointing out the Giambelli property to me. I am
also grateful to Mark Adler for warm hospitality at the Mathematics department
at Brandeis University and to Yacine Dolivet for a fruitful previous collaboration
on this subject.
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2. Schur average in the Stieltjes-Wigert biorthogonal ensemble

The computation of random matrix ensembles with a Schur insertion is not a well
developed topic. It is interesting from a mathematical point of view as, presum-
ably, one needs to combine results from algebraic combinatorics with the standard
orthogonal polynomial technique in random matrix theory. Works studying Schur
averages over random matrix ensembles are [14]-[19].

2.1. Characteristic polynomials in the biorthogonal case. In the orthogonal
case [6], recall that the average of the following polynomial

(2.1) Pk(M) �
kY
i=1

det(xi �M)

is obtained using a result by Brézin and Hikami [22]

(2.2) < Pk(x;M) >w=
1

a�(x)

�������
�n(x1) : : : �n+k�1(x1)
...

...
...

�n(xk) : : : �n+k�1(xk)

������� ;
where a�(x) is the Vandermonde determinant1 and �n(x) are the monic orthogonal
polynomials. We want to write an analogous formula in the biorthogonal case.
Following the steps in [22], it is easy to show that

(2.3) < Pk(x;M) >w;�=
1

a�(x)

�������
�n(x1; �) : : : �n+k�1(x1; �)

...
...
...

�n(xk; �) : : : �n+k�1(xk; �)

������� ;

(2.4) < Pk(x
�;M�) >w;�=

1

a�(x�)

�������
�n(x1; �) : : : �n+k�1(x1; �)

...
...
...

�n(xk; �) : : : �n+k�1(xk; �)

������� :
2.2. Extension of the quantum dimensions result to the biorthogonal
case. We �rst recall here the de�nition of the monic Stieltjes-Wigert polynomi-
als

(2.5) �n(x; �jq) =
nX
j=0

(�1)nq(j�n)(j+n+ 1
2 )

�
n

j

�
q

xj :

From our previous work [6], the monic biorthogonal Stieltjes-Wigert polynomials
read

(2.6) �n(x; �jq) =
nX
j=0

(�1)nq 12 (j�n)((1+�)(j+n)+2��)
�
n

j

�
q�
xj ;

and

(2.7) �n(x; �jq) =
nX
j=0

(�1)nq �2 (j�n)((1+�)(j+n)+1)
�
n

j

�
q�
x�j :

1We adopt the notations of [12]
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Now, let us turn to the computation of the quantum dimensions as performed in [6].
First, recall that the polynomial de�ned in (2:1) generates the Schur polynomials
in the following way

(2.8)
kY
i=1

det(xi �M) =
X

� ;�1�k
(�1)j�js�(M)s~�0(x):

We thus have to evaluate the determinant on the r.h.s. of (2:2), this time in terms
of the �n polynomials, rather than the �n ones that we employed in [6]. That is,
we shall employ (2:3) instead of (2:2).

2.2.1. 1 column case. One can read o¤ the result for representations associated to
1-column Young diagrams from the polynomials themselves

(2.9) < s(1j)(M) >w;�= q
� j
2 ((1+�)(2n�j)+2��)

�
n

j

�
q�
= q�

j
2 ((2�+1)n�j+2��)

�
n

j

�
q�
:

As in [6], we use bncq = q(1�n)=2 [n]q. Notice that, in this case, it is not clear how to
give a group theoretical interpretation of the exponent in the prefactor, in contrast
to the case when � = 1 [6] (see (2:15) below).

2.2.2. General case. We have to consider

a�(x)� =
X

i1;:::;ik

X
�2Sk

� (�) (�1)i1+:::+ik
kY
j=1

q�
ij
2 ((1+�)(2n+2�(j)�2�ij)+2��)

�
kQ
j=1

�
n+ � (j)� 1

ij

�
q�
x
n+�(j)�1�ij
j :(2.10)

Performing the relabelling ij ! ij + �(j)� 1; we obtainX
i1;:::;ik

(�1)i1+:::+ik+
k(k�1)

2

kY
j=1

q�
ij
2 [(1+�)(2n�ij)+2��]�

(j�1)
2 [(1+�)(2n+j)+1�2� ]

�

0@X
�2Sk

�(�)
kY
j=1

�
n+ � (j)� 1
ij + � (j)� 1

�
q�

1A kY
j=1

x
n�ij
j ;

(2.11)

or more simplyX
i1;:::;ik

(�1)i1+:::+ik+
k(k�1)

2

kY
j=1

q�
ij
2 [(1+�)(2n�ij)+2��]�

(j�1)
2 [(1+�)(2n+j)+1�2� ]

� det
1�a;b�k

 �
n+ b� 1
ia + b� 1

�
q�

!
kY
j=1

x
n�ij
j :

(2.12)

Now, in [6] we showed that

(2.13) det
1�a;b�k

 �
n+ b� 1
ia + b� 1

�
q�

!
= q�n(�

0)

�
n

�

�
q�
= q�[n(�

0)�n(�)+ 1
2 (n�1)j�j]D��;

with �0 the partition conjugate to � and equal to (i1; i2 + 1; : : : ; ik + k � 1). D�� is
the quantum dimension of the representation, but in terms of the quantum para-
meter q�. Therefore, we eventually obtain the expression of the average of a Schur
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polynomial as

(2.14) < s�(M) >w;�= q
f(�;�)D��;

with

f(�; �) =�

�
n(�0)� n(�) + 1

2
(n� 1)j�j

�
�
X
j

ij
2
[(1 + �)(2n� ij) + 2� �] +

(j � 1)
2

[(1 + �)(2n+ j) + 1� 2� ] :

When � = 1; it reduces to

(2.15) f(�; 1) = �1
2

 
(3n+ 1)j�j+

X
i

�2i � 2i�i

!
= �nj�j � 1

2
C
U(n)
� :

For general �; it is not obvious how to give the exponent factor a group theoretical
interpretation.

3. Quantum dimensions: particular cases

In the previous Section, we have extended the quantum dimensions result of
[6] to the biorthogonal setting. In both computations, we have employed a rather
general approach, valid for any representation. However, it is also interesting to deal
with more elementary, particular cases, involving simple representations, in order
to improve our understanding through elementary but explicit results. In addition,
important results like the celebrated product formula for the Schur polynomials
in terms of the Littlewood-Richardson coe¢ cients c��� [21] are employed in the
process, and some sort of q-Littlewood-Richardson coe¢ cients are found. In sake
of simplicity, we focus on the orthogonal (� = 1) case of [6].

3.1. One column case. Using the same notation as in [6], the quantum dimension
of the j-th fundamental representation of An�1, which is associated to the partition
(1j), or a one-column Young tableau of length j, is

(3.1) D(1j) � dimq �(j) =
�
n

j

�
q

:

The monic Stieltjes-Wigert polynomials can be written

(3.2) �n(x) =
nX
j=0

(�1)n�jq(j�n)(j+n+ 1
2 )

�
n

j

�
q

xj =< det(x�M) >w :

In addition, the following formula holds for the characteristic polynomial

(3.3) det(x�M) =
nX
j=0

(�1)n�js(1n�j)(M)xj ;

with s�(M) the Schur polynomial associated to the partition �. Therefore

(3.4)
nX
j=0

(�1)n�j < s(1n�j)(M) > xj =
nX
j=0

(�1)n�jq(j�n)(j+n+ 1
2 )

�
n

j

�
q

xj ;

from which we obtain

(3.5) < s(1j)(M) >= q
�j(2n�j+ 1

2 )

�
n

j

�
q

= q�
j
2 (3n�j+1)

�
n

j

�
q

:
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For later convenience, we also write < s(1n�j)(M) >= q(j�n)(n+
j+1
2 )D(1n�j). In

particular we have

(3.6) < s >= q�
3n
2 D :

As a check that Eq. (3:5) is correct, note that the exponent j
2 (3n � j + 1) can be

rewritten as

(3.7)
j

2
(3n� j + 1) = l(1j)n+

1

2
C
U(n)
(1j) ;

where l(1j) is the box number of the tableau and C
U(n)
� is the Casimir of the

representation of U(n) associated to the partition �

(3.8) C
U(n)
� = l(�)(n+ 1) +

X
i

(�2i � 2i�2i );

with l(�) the number of boxes of the diagram. In the case of the j-th fundamental
representation the Casimir is, as expected: CU(n)(1j) = nj � j

2 + j.

3.2. Some simple two-columns. We can examine in detail other representations,
like < s (M) >. We employ, as in the general method, the relation established
by Brézin and Hikami in [22], for the product of characteristic polynomials. We
only need a second moment

(3.9) < det(x�M)2 >=
�����n �n+1
�0n �0n+1

���� :
Expanding the highest degree terms on the l.h.s., we see that

< det(x�M)2 > = x2n � 2 < s > x2n�1 + (3 < s > + < s >)x2n�2�

� (4 < s > +2 < s >)x2n�3 + : : : ;

where we have used the relevant particular cases of the product formula for the
Schur polynomials in terms of the Littlewood-Richardson coe¢ cients c��� [21, 12]

(3.10) s�s� =
X
�

c���s� ;

for arbitrary partitions �; � and �. Now, a straightforward matching with the r.h.s.
gives

(3.11) < s >= q�4n
�
n+ 1

2

�
q

= q�3n�1D :

Normalizing the Schur operators through s � q 3n2 s so that < s >= D , then
we have

(3.12) < s >2= D +D and < s2 >= qD + q�1D ::

This somehow suggests a de�nition of q-Littlewood-Richardson coe¢ cients c���(q):
For instance, from this particular case, we have

(3.13) c
;
(q) = q and c

;
(q) = q�1:
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Note that if we de�ne, more generally, for any partition �

(3.14) s� � q
3nl(�)

2 s�;

we have the following formula for the fundamental representations

(3.15) s(1j) = q
j(j�1)

2 D(1j);
or equivalently

(3.16) c
�j+1

�j ;
= q

j(j+1)
2 :

Analyzing the degree (2n� 3) part of Eq. 3.9 we see that

(3.17) < s >= q�6n+
5
2
[n+ 1][n][n� 1]

[3]
= q�

9n
2 D

because

(3.18) D =
bn+ 1cbncbn� 1c

b3c ;

by the q-Hook formula (1:9) [11]. Once again, we see that the relation

(3.19) < s� >= q
�(nl(�)+ 1

2C
U(n)
� )D�

holds, as expected.
We have thus studied so far particular cases of the general result proved in [6]

and extended to the biorthogonal case. In contrast to this latter detailed study of
particular cases, in the next Section we show that, with a generic weight function,
the Giambelli compatibility property (1:13) extends to the biorthogonal setting.

4. Giambelli compatibility

We have brie�y presented in the Introduction the Giambelli compatibility prop-
erty, introduced and studied in detail in [10]. We shall see now that the argument
that leads to show that the unitary ensemble of random matrix theory is Giambelli
compatible in the sense of [10], extends to the biorthogonal case. The proof is
strictly the same (we reproduce it for clarity and to �x the notation), because the
procedure used in [10] applies also to the biorthogonal ensemble. Calling � an
arbitrary Young diagram and s�(x) its associated Schur polynomials, one has

(4.1) s�(x) =
det(x

�j+N�j
i )

det(xN�ji )
;

where N is the number of variables. Given a density distribution w(x) for the
eigenvalues of the model one has, in the biorthogonal case (and when j�j � N)

< s� >w;N;� =

Z Y
i

dw(xi) det
�
x
�j+N�j
i

�
det
�
x
�(N�j)
i

�
= C(N) det

D
x�i+N�i+�(N�j)

E
w;�
;(4.2)

according to the same trick that is used in [10] and which appears in Eq. (1.1)
in [23]. Now, the idea is to use an identity due to Macdonald (see [12], Example
I.3.21) which states:
Let fhrsg be any collection of commuting indeterminates such that

(4.3) h0s = 1; h�1;s = h�2; s = : : : = 0; 8s 2 Z+;
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and set

(4.4) ~s� = det (h�i�i+j;j�1)
k
i;j=1

for k � j�j. Then one has
(4.5) ~s� = det

�
~s(pijqj)

�
;

where � = (p1; : : : ; pdjq1; : : : ; qd) in Frobenius notation.
Exactly as in [10], consider the matrix g = (gkl) of format 1� N with entries

gkl =


xk+�l

�
w;�

with k 2 N and l = 0; : : : ; N � 1. Because the upper N � N
block (that is, the �rst N rows) is non-degenerate, one can multiply on the right
by its inverse (this is an N -dependent, ��independent quantity), and get a lower
triangular matrix g0 = (g0kl) satisfying

(4.6) g0kl = �kl; 0 � k � l � N � 1;
and therefore one has

(4.7) < s� >w;N;�= B(N) det(g
0
�i):

Now one can de�ne

(4.8) hrs �

8<:
g0r�s+N�1;N�s�1; s = 0; 1; : : : ; N � 1; r � 0
�r0; s � N; r � 0
0; s � 0; r < 0;

:

Therefore, the biorthogonalization preserves the Giambelli compatibility condition.
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