
b

n
n
x-

ditivity

lated
ed
l corner.
Physics Letters B 601 (2004) 201–208

www.elsevier.com/locate/physlet

Brownian motion, Chern–Simons theory, and 2d Yang–Mills

Sebastian de Haroa, Miguel Tierzb,c

a Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm, Germany
b Applied Mathematics Department, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

c Institut d’Estudis Espacials de Catalunya (IEEC/CSIC), Edifici Nexus, Gran Capità, 2-4, 08034 Barcelona, Spain

Received 25 July 2004; accepted 16 September 2004

Available online 25 September 2004

Editor: L. Alvarez-Gaumé

Abstract

We point out a precise connection between Brownian motion, Chern–Simons theory onS3, and 2d Yang–Mills theory on the
cylinder. The probability of reunion forN vicious walkers on a line gives the partition function of Chern–Simons theory oS3

with gauge groupU(N). The probability of starting with an equal-spacing condition and ending up with a generic configuratio
of movers gives the expectation value ofthe unknot. The probability with arbitrary initial andfinal states corresponds to the e
pectation value of the Hopf link. We find that the matrix model calculation of the partition function is nothing but the ad
law of probabilities. We establish acorrespondence betweenquantities in Brownian motion and the modularS- andT -matrices
of the WZW model at finitek andN . Brownian motion probabilites in the affine chamber of a Lie group are shown to be re
to the partition function of 2d Yang–Mills on the cylinder. Finally, the random-turns model of discrete random walks is relat
to Wilson’s plaquette model of 2d QCD, and the latter provides an exact two-dimensional analog of the melting crysta
Brownian motion provides a useful unifying framework for understanding various low-dimensional gauge theories.

 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Low-dimensional gauge theories are a useful pl
ground for understanding quantum field theory. Th
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0370-2693/$ – see front matter 2004 Elsevier B.V. All rights reserved
doi:10.1016/j.physletb.2004.09.033
also play an important role in string theory, and in p
ticular in topological string theories.

Relations between statistical mechanical syste
and quantum field theory are well known and ha
proved useful on both sides (see, for example,[1]).
A well-known example is provided by conformal fie
theories in two dimensions. For the case of high
dimensional topological theories, however, such
amples have until recentlyremained somewhat lim
.
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ited. An important recent breakthrough was the re
ization[2] that the closed topological A-model verte
discovered in[3] is related to a melting crystal co
ner [4]. In fact, D-branes can be included and hav
natural interpretation as defects[5]. In [4] this melting
crystal picture was used as a definition of ‘quant
Kähler gravity’, the quantum gravitational theory d
scribing fluctuations of the Kähler structure and top
ogy while keeping the complex structure fixed. In[6],
certain types of random walks were used to desc
the combinatorics of triangulations of 2+ 1 quantum
gravity. A review of the manifold connections betwe
random walks/Brownian motion and conformal fie
theory and two-dimensional quantum gravity can
found in[7].

In this Letter we provide further examples of pr
cise reformulations of statistical mechanical syste
in terms of gauge theories that are topological or cl
to topological. Full details will be given elsewhere[8].
Since the gauge theories in question have string th
realizations[9,10], it is our hope that this relation ca
be useful in string theory.

The first example relates Brownian motion ofN

vicious—that is, non-intersecting—walkers on a li
[11] with certain boundary conditions—or, equiv
lently, one particle moving in the Weyl chamber
a simply-laced, compact Lie groupG—to Chern–
Simons theory[12] onS3 for the corresponding group
The correspondence worksfor the partition function,
the expectation value of the unknot, and the expe
tion value of the Hopf link invariant, the basic reas
being the correspondence between the WZW mo
larS- andT -matrices and Brownian motion quantitie
The additivity law of probabilities can be reinterpret
as a matrix model derivation of the partition fun
tion of Chern–Simons theory onS3, where the repul-
sive force of the Vandermonde interaction transla
into an effective repulsion exerted by the walls of t
Weyl chamber. The correspondence is at finite val
of k and N , whereN is the number of movers an
gs = 2πi

k+N
= −1

t
is the inverse time. This is reminis

cent of relation found in[2], wheret played the role
of the temperature.

The second example concerns a walker movin
the fundamental Weyl chamber of an affine Lie alg
bra. This can be reinterpreted as the partition func
of 2d Yang–Mills on the cylinder, where the initia
and final positions correspond to states at the two e
of the cylinder, and now time is related to the ar
Our derivation reproducesformulas in the mathemat
cal literature which make the structure of the partit
function much more transparent than the usual s
over representations. In particular, the partition fu
tion is shown to be an affine character, and so
modular properties of 2d YM on the cylinder are mo
explicit in this formulation.

The third example is the case of discrete rand
walkers rather than continuous Brownian motion;
analyze the random turns model[11,13]. Its relation
to randomly growing Young tableaux and (by Po
sonization) to lattice QCD2 are known in the mathe
matical literature. We reinterpret the lattice QCD2 as
a two-dimensional melting crystal, where the ene
cost for removing a particle is the (logarithm of) t
gauge coupling.

2. Brownian motion and Chern–Simons theory

In this Letter we will be concerned with Brownia
motion ofN movers on a line. We will study so-calle
vicious walkers[11]. These are random walkers who
trajectories are not allowed to intersect. As is w
known, the intersection properties of such a rand
walk process play an important role in quantum fi
theory (as reviewed in detail in[1,7]).

Let us first consider the case of a single free wal
performing Brownian motion on a line. The probab
ity for it to travel fromy to x in time t is given by

(1)pt(x, y) = 1√
4πDt

e−(x−y)2/4Dt .

Here, D is the diffusion coefficient of the medium
which from now on we will set equal to 1/2. This
probability, and its generalizations, is the basic qu
tity that we will study in this Letter. It can be obtaine
by a variety of methods; for an overview see, e
[1,14]. Let us however mention some of its impo
tant properties. First of all, it can be obtained as
continuum limit of a discrete random walk, where
each tick of the clock the particle can travel a fixed
nite distance left or right with equal probability (s
also Section3). The probability is then a binomial dis
tribution whose continuum limit is Gaussian. Furth
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pt (x, y) satisfies the diffusion or heat equation

(2)
∂

∂t
pt (x, y) = D∆pt(x, y),

where∆ is the Laplacian inx. Finally, pt(x, y) turns
into a Dirac delta function of the positionx − y when
t tends to zero.

The above has an obvious higher-dimensional g
eralization:

(3)pt,N (x, y) = 1

(2πt)N/2e− |x−y|2
2t ,

andN is the dimension. Equivalently, this can be
garded as the product of the probabilities of N single
movers on a line, i.e., as the probability forN movers
on a line to start at positionsy1, . . . , yN and end up a
x1, . . . , xN after timet .

The particular process that we will relate to Cher
Simons theory is that ofN vicious walkers on a
line. Walkers are vicious[11] if they annihilate each
other when they meet. Thus, we will impose a no
intersecting condition and compute a probability
these walkers to walk from one configuration to a
other without ever intersecting. If we denote their c
ordinates byλi , i = 1, . . . ,N , they satisfyλ1 > λ2 >

· · · > λN . Alternatively, this process can be regard
as motion of a single particle in the fundamental W
chamber ofU(N). The particle starts moving at po
sition µi satisfyingµ1 > µ2 > · · · > µN , and is re-
quired to stay within the Weyl chamber. The proc
stops when the particle hits one of the walls. One t
computes the probability of going from an initial pos
tion µi to a final positionλi staying always within the
chamber. This is given by[11]:

pt,N (λ,µ) = 1

(2πt)N/2 e− |λ|2+|µ|2
2t

(4)× det
∣∣eλiµj /t

∣∣
1�i<j�N

.

Obviously, this probability is symmetric under inte
change of initial and final boundary conditions.

Let us now evaluate this amplitude in a spec
case. We take the same initial and final boundary c
ditions, i.e.,µ = λ, and further an equal spacing co
dition, that is,λ0j − λ0,j+1 = a, wherea is the initial
and final spacing between two neighboring move
We compute the so-called probability of reunion—t
probability that the movers go back to their (almo
coinciding) positions after timet . Of course, this is an
exponentially vanishing probability. Notice that, sin
theλ’s also label highest weights of irreducible rep
sentations ofU(N), this boundary condition is labele
by the Weyl vector for a suitable choice of the over
scale. Now a straightforward computation yields

(5)pt,N(λ0, λ0) = 1

(2πt)N/2

N∏
k=1

(
1− e−ka2/t

)N−k
.

We are going to relate this probability to the partiti
function of Chern–Simons theory.

Recall that Chern–Simons theory is a topologi
quantum field theory whose action is built of a Cher
Simons term involving as gauge field a gauge conn
tion associated to a groupG on a three-manifoldM
[12] (see[15] for a recent review). The action is:

(6)S(A) = k

4π

∫
M

Tr

(
A ∧ dA + 2

3
A ∧ A ∧ A

)
,

with k an integer number. Now if we choose un
wherea2 = 1 and identify

(7)−1

t
= gs = 2πi

k + N
,

with gs the string coupling, Eq.(5) is the partition
function of Chern–Simons onS3 with gauge group
U(N) [12]. Observables in Chern–Simons theory
ways come with a choice of framing, corresponding
a choice of trivialization of the tangent bundle in t
gravitational Chern–Simons term[12]. In our case, no
tice that the framing is the matrix model framing[16,
17], which is related to the canonical framing as f
lows:

(8)ZCS
(
S3) = e

πi
2 N2

q− 1
12N(N2−1)pt,N(λ0, λ0),

where the label 0 refers to the Weyl vectorλ0 = ρ, and
as usualq = egs .

One way to understand why we get the partit
function of Chern–Simons theory is to generalize
above to other compact groups[11,18]. Using the
method of images, one finds that the above probab
generalizes to

pt,r(λ,µ) = 1

(2πt)r/2e− |λ|2+|µ|2
2t

(9)×
∑
w∈W

ε(w)e(λ,wµ)/t ,
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wherer is the rank ofG andW the Weyl group. From
here, using the Weyl denominator formula we can
amplitudes for more general boundary conditions:

pt,r (λ,ρ)

(10)= 1

(2πt)r/2e− |λ|2+|ρ|2
2t

∏
α>0

2 sinh
(α,λ)

2t
,

whereα are the positive roots andρ is the Weyl vec-
tor. This expression is the (unnormalized) expecta
value of a Wilson loop around the unknot. The pa
tion function is obtained by settingλ = ρ. Normaliz-
ing (10) by the partition function gives the quantu
dimension.

Somewhat more generally, taking into account
framing and the central charge we can in fact wr
dropping an overall sign,

(11)pt,r (λ,µ) = e
2πi
12 dimg(T ST )λµ,

where

Sλµ = i |∆+|

(k + g)r/2

∣∣P/Q∨∣∣− 1
2

∑
w∈W

ε(w)e
− 2πi

k+g (λ,w·µ)
,

(12)Tλµ = δλµe
2πiC(λ)
2(k+g)

− 2πic
24 .

The central charge isc = k dimg/(k + g), C(λ) is the
Casimir of the representationλ, ∆+ is the set of posi-
tive roots,P is the weight lattice, andQ∨ is the coroot
lattice. Obviously,S is the Brownian motion probabil
ity (with the external factors ofT amputated), andT is
the Boltzmann factor. It is now also clear thatp(λ,µ)

itself corresponds to the (unnormalized) expecta
value of the Hopf link invariant with representatio
λ andµ. T ST is in fact the operator that performs th
modular transformationτ → τ/(τ +1) (see also[16]).
By this particular surgery[12] one obtainsS3 out of
two solid tori.

To end this section, let us remark that there i
matrix model expression for the partition function
Chern–Simons onS3 [17,19]:

ZCS
(
S3) = e− 1

12N(N2−1)gs

N !
∫ N∏

i=1

dλi

2π

(13)× e−|λ|2/2gs
∏
i<j

(
2 sinh

λi − λj

2

)2

.

It is not hard to check that this is nothing but the e
tensivity property of probabilities:

(14)pt+t ′,r (ρ,ρ) =
∫

[dλ]pt,r(ρ,λ)pt ′,r (λ,ρ),

where the range of integration is the same as in the
trix model, but using symmetry can be restricted to
Weyl chamber. This can also be seen as a renorma
tion group property. It is also clear that the repuls
sinh, coming from the Vandermonde determinant
related to the fact that the walls of the Weyl cham
are effectivelyrepelling. Indeed, all the paths that en
on these walls are suppressed from the expressio
the probability, and hence only paths will contribu
for which the particle stays away from the walls.

We saw that the partition function comes out
the natural matrix model framing. It would be inte
esting to see if one can obtain more generic frami
by rescalings and shifts of the boundary conditions
For the case of the partition function and the unknot
this seems possible[8]. This results in real exponen
tial factors, as expected from the analytic continuation
of the phase factors.

3. Brownian motion and QCD2

It is now natural to ask what happens if we co
sider Brownian motion in the fundamental Weyl cha
ber of an affine Lie algebra. The affine Weyl group
W̃ = W � T , whereT is the group of translations i
root space. In the case analyzed in the previous
tion, constraining the motion to the fundamental W
chamber was achieved by appropriately adding all
ages generated by the action ofW . Now, in addition,
we have to mod out by translations in the coroot
tice. We get the following density

qt,r (λ,µ)

(15)= 1

(2πt)r/2

∑
γ∈lQ∨

∑
w∈W

ε(w)e− 1
2t

|γ+λ−w·µ|2,

wherer is the rank andl = k + g. Standard manipula
tions yield

(16)qt,r (λ,µ) = 1

(2πt)r/2

∑
w∈W̃

e− 1
2t |λ̂−w·µ̂|2,
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for affine vectorŝλ = λ + lω̂0, following common no-
tation ω̂0 = (0;1;0). In fact, the normalized densit
is the affine character ch

λ̂
(µ̂/t), in complete analogy

with the finite case. With our boundary conditions, fo
mula(16)agrees with the general result found in[20].

Using the results in[21], it is not hard to see tha
the above is related to the partition function of
Yang–Mills theory on the cylinder. Two-dimension
Yang–Mills (see[22] for a review) is not a topolog
ical theory, but it is close to that in the sense tha
has no local degrees of freedom. It is invariant un
area-preserving diffeomorphisms. On the cylinder,
partition function is[23]:

Z2dYM(g, g′; t)

(17)=
∑

λ∈P++
χλ

(
g−1)χλ(g

′)e− t
2C(λ)− t

2 |ρ|2,

whereP++ are the dominant weights.1 The gauge cou
plinggYM and the area of the cylinderA always appea
through the combinationt = g2

YMA.
From the cylinder one can easily obtain the p

tition function for other two-dimensional manifold
A salient feature of the partition function on the cyli
der is its extensivity. If we glue two cylinders of a
easA1 andA2 along a common boundary, the par
tion function on the resulting cylinder of areaA′ =
A1 + A2 will have the same form, with new areaA′.
An analogous property also holds on the disk, and
be seen as an invariance under renormalization g
transformations and indicates that the plaquette m
for this theory is in fact exact. Notice that the area
linearly related to the Brownian motion timet , and so
this is like the additivity property(14)that we encoun
tered before.

As is well known, the partition function of 2
Yang–Mills is a solution of the heat equation on
group manifold. It is the kernel of the heat equat
defined such that it satisfies the heat equation for b
g and g′, and in the limitt → 0 it tends to a Dirac
delta functionδ(g − g′) with respect to the Haar mea
sure. From it one can construct the unique solution
the heat equation with specified boundary condition a
t = 0 [24].

Let us now state the precise relation betwe
Brownian motion and 2d Yang–Mills. We consider t

1 For convenience we included a constant factor of|ρ|2.
group elementsg = e2πiλ/ l, g′ = e2πiµ/l . Using the
manipulations in[21], we find

Z2dYM(g, g′; t)

(18)= (−il)rvol(P/Q∨)

Dρ(2πiλ/l)Dρ(−2πiµ/l)
qt,r (λ,µ),

whereqt,r is given in(16). The normalization factor
Dρ come from the normalization of the characters t
enter Z2dYM, whereasqt,l is always unnormalized
as we also saw in the previous section. In parti
lar, the normalization is independent oft and thus the
t-dependence is totally contained inqt,r . The above
relation is our main result in this section.

It is well known that the partition function of 2
YM on the sphere does not have nice modular trans
mation properties. The reason is that it is proportio
to the derivative of a modular form, rather than t
modular form itself. For the case of the torus, see[25,
26]. The modular properties of the partition function
on the cylinder are easy to work out from the above
suffices to realize thatqt,r (λ,µ) is an affine characte
which is obtained from a theta function by summi
over all images. We hope to come back to this is
[8]. Related work appeared in[27]. Let us here remar
that there is a special group element which one can
sert, so that the partition function on the sphere d
have nice modular properties. This is the special gr
element defined in[24,28]such that the character h
values 0,±1. Let us denote by|a〉 the associated stat
We can then interpretZ2dYM(a; t) as a partition func-
tion on the sphere with insertion of a state|a〉 at t = 0.
The partition function can be written in terms of t
Dedekindη-function by Macdonald’sη-function for-
mula[29]:

(19)Z2dYM(a; t) = e− t
24dimGη(t)dimG.

We will end this section with some comments
one-dimensional discrete random walks and their r
tion to growing Young tableaux and Wilson’s plaque
model.2 Brownian motion is a limiting case of thi
[11]. We will focus on the random-turns model[11,
13], whereN movers are allowed to move on a (on
dimensional) lattice, but at each tick of the clock on

2 There are various possible reformulations of the discrete
dom walks problem, that we will not consider here: as a Hamm
ley process, a growing PNG droplet, etc. See, e.g.,[30].
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one mover walks, and it can take a step left or ri
with equal probability. It is known[13,31] that the
probability of reunion after 2n steps in this model is
given by the expectation value of 2n powers of a uni-
tary matrix in a unitary ensemble ofN × N matrices.
This probability is also proportional to the probab
ity of the largest increasing subsequence of a rand
permutation ofn objects of having length� N . By
the Schensted correspondence between random
mutations and Young diagrams, this is also the pr
ability for the top row of a Young diagram withn
boxes to have length� N . Let us call this probabil
ity P(ln � N). The Gross–Witten model is obtaine
by studying the Poissonized quantity, i.e., studying all
possible (Poisson distributed) Young tableaux wh
top row has lengthLλ � N :

P(Lλ � N) = e−λ

∞∑
n=0

1

n!λ
nP (ln � N)

(20)= e−λ
∞∑

n=0

∑
µ	n,µ1�N

1

n!λ
n
d2
µ

n! ,

whereLλ is the length of the top row of a set of d
agrams that are Poisson distributed, andµ 	 n means
that µ partitionsn, anddµ is given by the hook for-
mula of the diagram. Butd2

µ/n! is the Plancherel mea
sure, which is also the probability to pick a Youn
diagram of shapeµ among a random set. Thus, t
above is the grand canonical ensemble distribution
tableaux with top rows of lengthsLλ � N , and logλ
is the chemical potential for adding a box anywhere
the diagram so that it remains a validU(N) tableau.
If we identify λ with the gauge coupling, we obta
Wilson’s lattice version of QCD2

ZGW =
∫

dU exp

[
1

g2 TrF
(
U + U†)]

= eλP (Lλ � N)

(21)=
∞∑

n=0

1

(2n)!
1

g4n
Z2n(µj = j,λi = i),

whereλ = 1/g4. The trace is taken in the fundamen
representation ofU(N). The last equality relates th
partition function to the random walks probability. T
plaquette model was solved at finiteN in [32]. In [33]
it was found that the model has a third-order ph
-

transition3 at largeN . Thus, lattice QCD2 can be re-
formulated as a growing (or shrinking) Young table

The lattice model of QCD2 is celebrated for its
phase transition. This occurs atλ = g2N = 2 and
is closely related to a similar phase transition in
probabilities of the random distribution. Indeed,[34]
has proved a depoissonization lemma that bounds
value of the probability of the random distribution
from above and from below with its Poissonized val
The phase transition for the random Young diagr
occurs when the number of boxes grows asn ∼ 2

√
N .

Finally, let us comment that also in the case of
growing Young tableau there is a limiting shape
ter appropriate rescaling withN . This limiting shape
is given by a continuous (but non-differentiable) fun
tion, the discontinuity being of course at the point
the phase transition. This is a two-dimensional a
logue of the limiting shape of the 3d partitions fou
in [2].

4. Discussion and outlook

In this Letter we have pointed out three conn
tions: between Brownian motion in the fundamen
Weyl chamber of a simply-laced, compact Lie grou
and Chern–Simons theory onS3 for the corresponding
group; between Brownian motion in the Weyl cha
ber of an affine Lie group and 2d Yang–Mills theor
and between the random-turns model of discrete
dom walks, a two-dimensional melting crystal, a
lattice QCD2. The fact that the connections are qu
general—in the case of Chern–Simons, we get a st
tical mechanical realization of the modular matrices
and work for various gauge groups, might lead o
to think that there may be more to the relation b
tween random/diffusion walks and gauge theories t
just a mathematical coincidence, and one might h
to find physical applications. Therefore these conn
tions immediately raise several questions. First of
how far does the correspondence go? In the cas
Chern–Simons, we saw that the agreement can be
derstood from the representation of the modularS-

3 It is not hard to see that the phase transition precisely co
from the restriction on the number of boxes in the top row to
� N .
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andT -matrices as non-intersecting Brownian moti
probabilities and Boltzmann factors, respectively. T
ing into account the role ofSL(2,Z) in the surgery
approach of Chern–Simons theory[9], one may hope
that for manifolds other thanS3 at least the simples
cases may have an interpretation in terms of Brown
motion quantities. This is certainly worth explorin
further. Also, the basic cases of the partition functi
the unknot and the Hopf link can be easily obtain
from Brownian motion. It would be interesting to s
if more general knots can also be obtained.

In the affine case, where one finds the partit
function of 2d Yang–Mills on the cylinder, it would b
interesting to see if one can extend the connectio
expectation values of Wilson lines, or whether ther
a Brownian motion interpretation of the partition fun
tion on the three-punctured sphere.

A particularly interesting point would be to see
Brownian motion can give us further connections
tween these low-dimensional theories. For exam
the fact that Brownian motion is a limit of a discre
random walk is very suggestive of a connection
tween two-dimensional and three-dimensional th
ries. Also, it would be interesting to see whether
lock-step model[11], which we have not considered
this Letter, also has a reformulation in terms of a lo
dimensional gauge theory. Notice also that the way
Yang–Mills arises from Brownian motion is by effe
tively compactifying the dual Cartan subalgebra t
torus. The resulting expression is an affine charac
which makes the modular properties of the partit
function completely explicit. A connection between
Yang–Mills on the torus and topological strings has
cently been pointed out in[25].

We saw that the matrix model of Chern–Simo
theory onS3 naturally arises in the composition law
probabilities. Indeed, since we are dealing with con
uous paths it seems that the matrix model formula
of Chern–Simons theory is the most natural one
Brownian motion. Yet from the point of view of th
WZW model one naturally gets sums over repres
tations rather than integrals. At the level of the int
mediate states, there is a precise way in which b
approaches are equivalent[8]. In Chern–Simons the
ory the representations are integrable, and from
Brownian motion point of view these correspond
special points on the line. We can deal more gen
ally with arbitrary points by using characters. It wou
also be interesting to explore the connection with
fermionic representation.

On the more mathematical side, the underly
principle allowing these connections seems to be
fact that all these models in one way or another sat
the heat equation. It has been known for a long t
that certain quantities in the WZW model satisfy t
heat equation[35]. Also, the heat equation is close
related to modular invariance. We hope to report m
on this in the future[8].

Perhaps one of the most interesting question
whether Brownian motion can be used as a too
string theory, in the spirit of[2,4], for example. Chern–
Simons theory is the effective gauge theory describ
the topological A-model[9], and so a reformulation in
terms of Brownian motion might be useful for strin
theory itself. Notice furthermore that the natural stri
theory coupling is related to the Brownian motion p
rametert (which is actually the product of the tim
parameter and the diffusion coefficient) as−1

t
= gs ,

whereas the relation to the Chern–Simons coupling
volves analytic continuation.4 This suggests that th
interpretation of topological strings in terms of a s
tistical mechanical system may in some ways be m
natural than as a gauge theory. In particular, it wo
be extremely interesting to understand whether
heat equation plays a role in the topological A-mod
One would also like to see if discrete random walks
of which Brownian motion is a limit—are related
topological strings. Notice that[36] have used random
partitions—which, as pointed out, are equivalent to
random walks model and, after Poissonization, to
plaquette model of QCD2—to compute the prepoten
tial of N = 2 SYM theory.

Another interesting question is whether 2d Yan
Mills and lattice QCD2, and their respective third
order phase transitions, have string theory interp
tations. In[37] it was shown that the QCD2 plaque-
tte model can be used to obtain theSU(2) N = 2
Seiberg–Witten solution by taking a double scaling
limit. In particular, a local Calabi–Yau geometry th
engineers this curve was found. In this case, it was
gued that the phase transition plays no role. In[38], 2d

4 This analytic continuation is a subtle issue that we hope to
back to in the future.
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Yang–Mills on a Riemann surfaceΣ was obtained by
wrapping D6 branes onS1 × Σ .

We saw that the Gross–Witten phase transit
does play a role in the context of the shrinking tw
dimensional Young tableau. It was related to the n
differentiability of the limiting shape. It would be in
teresting to see whether such phase transitions
present and play any role for the topological vertex

Let us also mention that Cardy[39] has recently
found a remarkable connection between a sys
of N non-intersecting Brownian motions (describ
through the celebrated SLE process) and bound
bulk conformal field theory models and integrab
models of Sutherland type.

Finally, recall that[40] pointed out connections be
tween vertex models and Chern–Simons theory.
random walks that we have mentioned in this Le
are special cases of vertex models. However, for us
connection with Chern–Simons theory appears in
continuous limit of Brownian motion rather than in th
discrete case.
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