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Abstract

We point out a precise connection between Brownian motion, Chern—Simons the$fyamd 2d Yag—Mills theory on the
cylinder. The probability of reunion faw vicious walkers on a line gives the partition function of Chern—Simons theo@?’on
with gauge grou/ (N). The probability of starting with anqeial-spacing conditionred ending up with a generic configuration
of movers gives the expectation valuetioé unknot. The prolimlity with arbitrary initial andfinal states corresponds to the ex-
pectation value of the Hopf link. We find that the matrix model calculation of the partition function is nothing but the additivity
law of probabilities. We establisharrespondence betwegnantities in Brownian mtion and the modula$- and7-matrices
of the WZW model at finitd and N. Brownian motion probabilites in the affine chamber of a Lie group are shown to be related
to the partition function of 2d Mag—Mills on the cylinder. Finally, the random-the model of discrete random walks is related
to Wilson’s plaquette model of 2d QCD, and the latter provides an exact two-dimensional analog of the melting crystal corner.
Brownian motion provides a useful unifying framework for understanding various low-dimensional gauge theories.

0 2004 Elsevier B.V. All rights reserved.

PACS:11.25.-w; 11.15.-q

1. Introduction also play an importantrole in string theory, and in par-
ticular in topological string theories.
Relations between statistical mechanical systems
Low-dimensional gauge theories are a useful play- and quantum field theory are well known and have
ground for understanding quantum field theory. They proved useful on both sides (see, for examfilg).
A well-known example is provided by conformal field
theories in two dimensions. For the case of higher-
~ E-mail addressessdh@aei.mpg.des. de Haro), dimensional topological theories, however, such ex-
m.tierz@open.ac.ykierz@ieec.fcr.e¢M. Tierz). amples have until recentlyemained somewhat lim-
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ited. An important recent breakthrough was the real- of the cylinder, and now time is related to the area.
ization[2] that the closed topological A-model vertex Our derivation reproducdsrmulas in the mathemati-
discovered in3] is related to a melting crystal cor- cal literature which make the structure of the partition
ner[4]. In fact, D-branes can be included and have a function much more transparent than the usual sum
natural interpretation as defe¢8. In [4] this melting over representations. In particular, the partition func-
crystal picture was used as a definition of ‘quantum tion is shown to be an affine character, and so the
Kéahler gravity’, the quantum gravitational theory de- modular properties of 2d YM on the cylinder are most
scribing fluctuations of the Kéhler structure and topol- explicit in this formulation.
ogy while keeping the complex structure fixed [&, The third example is the case of discrete random
certain types of random walks were used to describe walkers rather than continuous Brownian motion; we
the combinatorics of triangulations of21 quantum analyze the random turns modéll,13] Its relation
gravity. A review of the manifold connections between to randomly growing Young tableaux and (by Pois-
random walks/Brownian motion and conformal field sonization) to lattice QCpare known in the mathe-
theory and two-dimensional quantum gravity can be matical literature. We reinterpret the lattice QCBs
found in[7]. a two-dimensional melting crystal, where the energy
In this Letter we provide further examples of pre- cost for removing a patrticle is the (logarithm of) the
cise reformulations of statistical mechanical systems gauge coupling.
in terms of gauge theories that are topological or close
to topological. Full details will be given elsewhd83.
Smc;e the gauge the.orles in question h_ave str!ng theoryz_ Brownian motion and Chern
realizationg9,10], it is our hope that this relation can

be useful in string theory.
The first example relates Brownian motion &f In this Letter we will be concerned with Brownian

vicious—that is, non-intersecting—walkers on a line motion of N movers on a line. We will study so-called
[11] with certain boundary conditions—or, equiva- Vicious walkerg11]. These are random walkers whose
lently, one particle moving in the Weyl chamber of trajectories are not allowed to intersect. As is well

—Simons theory

a simply-laced, compact Lie groug—to Chern— known, the intersection properties of such a random
Simons theory12] on $° for the corresponding group. ~ Walk process play an important role in quantum field
The correspondence worksr the patition function, theory (as reviewed in detail {4,7]).

the expectation value of the unknot, and the expecta-  Let us first consider the case of a single free walker
tion value of the Hopf link invariant, the basic reason performing Brownian motion on a line. The probabil-
being the correspondence between the WZW modu- ity for it to travel fromy to x in time is given by

lar S- andT -matrices and Brownian motion quantities.

The additivity law of probabilities can be reinterpreted 1 —(x—y)2/4Dt
as a matrix model derivation of the partition func- Pr(¥:¥)= JanDi . : @)

tion of Chern—Simons theory o$f, where the repul-
sive force of the Vandermonde interaction translates Here, D is the diffusion coefficient of the medium,
into an effective repulsion exerted by the walls of the which from now on we will set equal to/2. This
Weyl chamber. The correspondence is at finite values probability, and its generalizations, is the basic quan-
of k and N, whereN is the number of movers and tity that we will study in this Letter. It can be obtained
g = szzlv = —% is the inverse time. This is reminis- by a variety of methods; for an overview see, e.g.,
cent of relation found if2], wherer played the role [1,14]. Let us however mention some of its impor-
of the temperature. tant properties. First of all, it can be obtained as the
The second example concerns a walker moving in continuum limit of a discrete random walk, where at
the fundamental Weyl chamber of an affine Lie alge- each tick of the clock the particle can travel a fixed fi-
bra. This can be reinterpreted as the partition function nite distance left or right with equal probability (see
of 2d Yang—Mills on the cylinder, where the initial also Sectior8). The probability is then a binomial dis-
and final positions correspond to states at the two endstribution whose continuum limit is Gaussian. Further,
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p: (x, y) satisfies the diffusion or heat equation

a
Epl(-xvy):DApl(xvy)v (2)

where A is the Laplacian inc. Finally, p;(x, y) turns
into a Dirac delta function of the position— y when
t tends to zero.
The above has an obvious higher-dimensional gen-
eralization:
by

7(27”)]\//26 K 3)

and N is the dimension. Equivalently, this can be re-
garded as the product the probailities of N single
movers on a line, i.e., as the probability f¥rmovers
on a line to start at positions, ..., yy and end up at
X1, ..., xy after timer.

The particular process that we will relate to Chern—
Simons theory is that ofV vicious walkers on a
line. Walkers are viciougl1] if they annihilate each
other when they meet. Thus, we will impose a non-
intersecting condition and compute a probability for
these walkers to walk from one configuration to an-
other without ever intersecting. If we denote their co-
ordinates by;, i =1, ..., N, they satisfyr1 > Ao >
--- > Ay. Alternatively, this process can be regarded
as motion of a single particle in the fundamental Weyl
chamber ofU (N). The particle starts moving at po-
sition w; satisfyinguy > u2 > --- > uy, and is re-
quired to stay within the Weyl chamber. The process
stops when the particle hits one of the walls. One then
computes the probability of going from an initial posi-
tion w; to a final position; staying always within the
chamber. This is given bl 1]:

1
2rx0)N2°
X deqe}‘i“f/’

pl,N(xv y)=

_ aPip?

pl,N()"v M) =

4

Obviously, this probability is symmetric under inter-
change of initial and final boundary conditions.

Let us now evaluate this amplitude in a specific
case. We take the same initial and final boundary con-
ditions, i.e.,u = A, and further an equal spacing con-
dition, that is,Ao; — Ao, j+1 = a, Wherea is the initial
and final spacing between two neighboring movers.
We compute the so-called probability of reunion—the
probability that the movers go back to their (almost
coinciding) positions after time Of course, this is an

|1<i<j<N'

203

exponentially vanishing probability. Notice that, since
the’s also label highest weights of irreducible repre-
sentations o/ (N), this boundary condition is labeled
by the Weyl vector for a suitable choice of the overall
scale. Now a straightforward computation yields

N
1 —ka2/\N—k
P (0. 20) = s [ [ =)0 (8)
k=1

We are going to relate this probability to the partition
function of Chern—Simons theory.

Recall that Chern—Simons theory is a topological
guantum field theory whose action is built of a Chern—
Simons term involving as gauge field a gauge connec-
tion associated to a grou@ on a three-manifold/

[12] (se€[15] for a recent review). The action is:

S(A):i/TI’<A/\dA+gA/\A/\A>, (6)
A7 3
M

with £ an integer number. Now if we choose units
whereq? = 1 and identify

1 2mi

(S TN %
with gs the string coupling, Eq(5) is the partition
function of Chern—Simons o83 with gauge group
U(N) [12]. Observables in Chern—Simons theory al-
ways come with a choice of framing, corresponding to
a choice of trivialization of the tangent bundle in the
gravitational Chern—Simons tefi2]. In our case, no-
tice that the framing is the matrix model framifp,
17], which is related to the canonical framing as fol-
lows:

ming2 _ 1 2_
ZcS(SS)zeZNq VNV =D (2o, 20),

8

where the label O refers to the Weyl vecigr= p, and
as usual = ess.

One way to understand why we get the partition
function of Chern—Simons theory is to generalize the
above to other compact grouf$l,18] Using the
method of images, one finds that the above probability
generalizes to

1
1) 2°

x Z e(w)ePwm/t

weW

M2
2t

pt,r()\» n) =

©)
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wherer is the rank ofG andW the Weyl group. From
here, using the Weyl denominator formula we can get
amplitudes for more genal boundary conditions:

Pr.r(A, p)

1 12 41p2 o (a, )
= — 2t
G2 HZsmh o

(10)

a>0

wherea are the positive roots andis the Weyl vec-
tor. This expression is the (unnormalized) expectation
value of a Wilson loop around the unknot. The parti-
tion function is obtained by setting= p. Normaliz-
ing (10) by the partition function gives the quantum
dimension.

Somewhat more generally, taking into account the
framing and the central charge we can in fact write,
dropping an overall sign,

i) = e BAME (ST, (11)

where

ilA+

1 27i
_ V-3 — 2L )
Sha (k+g)r/2|P/Q | wzewe(w)e ’ ’
2niC(X) _ 2mic

T)‘P« = (S)\Me 2(k+g) 24 .

12)

The central charge is= kdimg/(k + g), C(A) is the
Casimir of the representation A is the set of posi-
tive roots, P is the weight lattice, an@" is the coroot
lattice. ObviouslyS is the Brownian motion probabil-
ity (with the external factors of amputated), and is
the Boltzmann factor. It is now also clear that., u)
itself corresponds to the (unnormalized) expectation
value of the Hopf link invariant with representations
A andp. TST is in fact the operator that performs the
modular transformation — t/(r +1) (see als¢16]).
By this particular surgery12] one obtainss® out of
two solid tori.

To end this section, let us remark that there is a
matrix model expression for the partition function of
Chern—Simons o8° [17,19]

N,

/1

e~ 12N (V2=Dyg,
1127
i=1

Zes(8%) = —,

2 A=A\
x e~ M /Zg-fl_[<25|nh 5 ’). (13)

i<j
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It is not hard to check that this is nothing but the ex-
tensivity property of probabilities:

peae0e) = [ 1001 p pes ). (14)
where the range of integration is the same as in the ma-
trix model, but using symmetry can be restricted to the
Weyl chamber. This can also be seen as a renormaliza-
tion group property. It is also clear that the repulsive
sinh, coming from the Vandermonde determinant, is
related to the fact that the walls of the Weyl chamber
are effectivelyrepelling Indeed, all the paths that end
on these walls are suppressed from the expression for
the probability, and hence only paths will contribute
for which the particle stays away from the walls.

We saw that the partition function comes out in
the natural matrix model framing. It would be inter-
esting to see if one can obtain more generic framings
by rescalings and sh#tof the boundary conditions.
For the case of the pition function axd the unknot
this seems possibl8]. This results in real exponen-
tial factors, as expected frorhe analytic continuation
of the phase factors.

3. Brownian motion and QCD»

It is now natural to ask what happens if we con-
sider Brownian motion in the fundamental Weyl cham-
ber of an affine Lie algebra. The affine Weyl group is
W =W x T, whereT is the group of translations in
root space. In the case analyzed in the previous sec-
tion, constraining the motion to the fundamental Weyl
chamber was achieved by appropriately adding all im-
ages generated by the actiongf Now, in addition,
we have to mod out by translations in the coroot lat-
tice. We get the following density

%,r()\’ /'L)
1
== Y Y eweral el )
(1) yelQYV weW

wherer is the rank and = k + g. Standard manipula-
tions yield

1 TP
‘]t,r()h,llv)=W Ze z 1AWl (16)

weW
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for affine vectors. = A + &y, following common no-
tation g = (0; 1; 0). In fact, the normalized density
is the affine character ¢lyi/1), in complete analogy
with the finite case. With our boundary conditions, for-
mula(16) agrees with the general result found20].

Using the results if21], it is not hard to see that
the above is related to the partition function of 2d
Yang—Mills theory on the cylinder. Two-dimensional
Yang-Mills (see[22] for a review) is not a topolog-
ical theory, but it is close to that in the sense that it
has no local degrees of freedom. It is invariant under
area-preserving diffeomorphisms. On the cylinder, the
partition function ig23]:

Zodaym(g. g5 1)

- -4 _Liy2
Z Xx(g 1)Xx(g/)e 2C)=3lpl"
AEPy

17

whereP, , are the dominant weightsThe gauge cou-
pling gym and the area of the cylinddralways appear
through the combination= g2,, A.

From the cylinder one can easily obtain the par-
tition function for other two-dimensional manifolds.
A salient feature of the partition function on the cylin-
der is its extensivity. If we glue two cylinders of ar-
easA; and A, along a common boundary, the parti-
tion function on the resulting cylinder of arefl =
A1 + Ao will have the same form, with new areH.
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group elementg = e27i*/! ¢/ = 27t/ Using the
manipulations irf21], we find

Zodym(g. 8’5 1)
B (—il)"vol(P/ Q")
"~ D,(2rir/1)Dy(=2mip/1)

whereg; , is given in(16). The normalization factors
D, come from the normalization of the characters that
enter Zogym, wWhereasg,; is always unnormalized,
as we also saw in the previous section. In particu-
lar, the normalization is independent:oénd thus the
t-dependence is totally contained 4. The above
relation is our main result in this section.

It is well known that the partition function of 2d
YM on the sphere does not have nice modular transfor-
mation properties. The reason is that it is proportional
to the derivative of a modular form, rather than the
modular form itself. For the case of the torus, §&%,

26]. The modular propertiesf ahe partition function

on the cylinder are easy to work out from the above. It
suffices to realize that, , (1, n) is an affine character,
which is obtained from a theta function by summing
over all images. We hope to come back to this issue
[8]. Related work appeared j&7]. Let us here remark
that there is a special group element which one can in-
sert, so that the partition function on the sphere does
have nice modular properties. This is the special group

Qt,r()h M)’ (18)

An analogous property also holds on the disk, and can element defined if24,28] such that the character has
be seen as an invariance under renormalization groupvalues Q+1. Let us denote bju) the associated state.
transformations and indicates that the plaquette model We can then interpref,qym(a; t) as a partition func-

for this theory is in fact exact. Notice that the area is
linearly related to the Brownian motion timeand so
this is like the additivity property14)that we encoun-
tered before.

As is well known, the partition function of 2d
Yang—Mills is a solution of the heat equation on a
group manifold. It is the kernel of the heat equation

tion on the sphere with insertion of a staté atr = 0.
The partition function can be written in terms of the
Dedekindn-function by Macdonald’s)-function for-
mula[29]:

4o )
dImGn(t)dlmG.

Zogym(a;t) = e 2 (19)

We will end this section with some comments on

defined such that it satisfies the heat equation for both ;he_dimensional discrete random walks and their rela-

g andg’, and in the limitr — 0 it tends to a Dirac
delta functions (g — g’) with respect to the Haar mea-
sure. From it one can construct the unique solution of
the heat equation with spéieid boundary condition at
t =0[24].

Let us now state the precise relation between
Brownian motion and 2d Yang—Mills. We consider the

1 For convenience we included a constant factofpgf.

tion to growing Young tableaux and Wilson’s plaquette
model2 Brownian motion is a limiting case of this
[11]. We will focus on the random-turns modgl1,
13], whereN movers are allowed to move on a (one-
dimensional) lattice, but at each tick of the clock only

2 There are various possible reformulations of the discrete ran-
dom walks problem, that we will not consider here: as a Hammers-
ley process, a growing PNG droplet, etc. See, ¢36),
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one mover walks, and it can take a step left or right transitior? at largeN. Thus, lattice QCB can be re-
with equal probability. It is knowr[13,31] that the formulated as a growing (or shrinking) Young tableau.

probability of reunion after 2 steps in this model is The lattice model of QCP is celebrated for its
given by the expectation value of powers of a uni- phase transition. This occurs at= g?N = 2 and
tary matrix in a unitary ensemble &f x N matrices. is closely related to a similar phase transition in the

This probability is also proportional to the probabil- probabilities & the random distribution. Indeef{34]

ity of the largest increasing subsequence of a randomhas proved a depoissonization lemma that bounds the
permutation ofn objects of having lengtkd N. By value of the probhkility of the random distribution
the Schensted correspondence between random perfrom above and from below with its Poissonized value.
mutations and Young diagrams, this is also the prob- The phase transition for the random Young diagram
ability for the top row of a Young diagram with occurs when the number of boxes grows:as 2/N.
boxes to have lengtkl N. Let us call this probabil- Finally, let us comment that also in the case of the
ity P(l, < N). The Gross—Witten model is obtained growing Young tableau there is a limiting shape af-
by studying the Poissonized quidy, i.e., studying all ter appropriate rescaling witN. This limiting shape
possible (Poisson distributed) Young tableaux whose is given by a continuous (but non-differentiable) func-
top row has lengtti, < N: tion, the discontinuity being of course at the point of
the phase transition. This is a two-dimensional ana-
logue of the limiting shape of the 3d partitions found

00
1
= T an
P(L, <N)=e Eo’”k P, <N) n2].
n=

_oy ix”ﬁ 20
—¢ Z Z n!" n!’ (20)

=0 prn <N 4. Discussion and outlook

where L, is the length of the top row of a set of di-
agrams that are Poisson distributed, and » means
that . partitionsn, andd,, is given by the hook for-
mula of the diagram. But? /n! is the Plancherel mea-
sure, which is also the probability to pick a Young
diagram of shapge. among a random set. Thus, the
above is the grand canonical ensemble distribution for
tableaux with top rows of lengths, < N, and log.

is the chemical potential for adding a box anywhere in
the diagram so that it remains a vali{ N) tableau.

If we identify A with the gauge coupling, we obtain
Wilson'’s lattice version of QCP

In this Letter we have pointed out three connec-
tions: between Brownian motion in the fundamental
Weyl chamber of a simply-laced, compact Lie group,
and Chern—Simons theory &1 for the corresponding
group; between Brownian motion in the Weyl cham-
ber of an affine Lie group and 2d Yang-Mills theory;
and between the random-turns model of discrete ran-
dom walks, a two-dimensional melting crystal, and
lattice QCDy». The fact that the connections are quite
general—in the case of Chern—Simons, we get a statis-
tical mechanical realization of the modular matrices—
and work for various gauge groups, might lead one

1 to think that there may be more to the relation be-
Zow = / du exp[—zTrF(U + UT)] tween random/diffusion walks and gauge theories than
. & just a mathematical coincidence, and one might hope
=e"P(Ly<N) to find physical applications. Therefore these connec-
© 1 1 tions immediately raise several questions. First of all,
= Z 2! gWZZn(l/«j =Jj,Ai=1i), (21) how far does the correspondence go? In the case of
n=0 ' Chern-Simons, we saw that the agreement can be un-

wherex = 1/g%. The trace is taken in the fundamental derstood from the representation of the mod.far

representation ot/ (N). The last equality relates the
partition function to the random walks prObab"Ity' The 3 It is not hard to see that the phase transition precisely comes

plaguette model was solved at finitein [32]. In [33] from the restriction on the number of boxes in the top row to be
it was found that the model has a third-order phase <n.
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and T-matrices as non-intersecting Brownian motion also be interesting to explore the connection with the
probabilities and Boltzmann factors, respectively. Tak- fermionic representation.

ing into account the role o8L(2, Z) in the surgery On the more mathematical side, the underlying
approach of Chern—-Simons thed8}, one may hope  principle allowing these connections seems to be the
that for manifolds other tha® at least the simplest  fact that all these models in one way or another satisfy
cases may have an interpretation in terms of Brownian the heat equation. It has been known for a long time
motion quantities. This is certainly worth exploring that certain quantities in the WZW model satisfy the
further. Also, the basic cases of the partition function, heat equatiofi35]. Also, the heat equation is closely
the unknot and the Hopf link can be easily obtained related to modular invariance. We hope to report more
from Brownian motion. It would be interesting to see on this in the futurgg].

if more general knots can also be obtained. Perhaps one of the most interesting questions is

In the affine case, where one finds the partition whether Brownian motion can be used as a tool in
function of 2d Yang—Mills on the cylinder, it would be  string theory, in the spirit d2,4], for example. Chern—
interesting to see if one can extend the connection to Simons theory is the effective gauge theory describing
expectation values of Wilson lines, or whether there is the topological A-mode9], and so a reformulation in
a Brownian motion interpretation of the partition func- terms of Brownian motion might be useful for string
tion on the three-punctured sphere. theory itself. Notice furthermore that the natural string

A particularly interesting point would be to see if theory coupling is related to the Brownian motion pa-
Brownian motion can give us further connections be- rameter: (which is actually the product of the time
tween these low-dimensional theories. For example, parameter and the diffusion coefficient) as} = g
the fact that Brownian motion is a limit of a discrete whereas the relation to the Chern—Simons coupling in-
random walk is very suggestive of a connection be- volves analytic continuatiof.This suggests that the
tween two-dimensional and three-dimensional theo- interpretation of topological strings in terms of a sta-
ries. Also, it would be interesting to see whether the tistical mechanical system may in some ways be more
lock-step mode]l11], which we have not considered in  natural than as a gauge theory. In particular, it would
this Letter, also has a reformulation in terms of a low- be extremely interesting to understand whether the
dimensional gauge theory. Notice also that the way 2d heat equation plays a role in the topological A-model.
Yang—Mills arises from Brownian motion is by effec- One would also like to see if discrete random walks—
tively compactifying the dual Cartan subalgebra to a of which Brownian motion is a limit—are related to
torus. The resulting expression is an affine character, topological strings. Notice th§86] have used random
which makes the modular properties of the partition partitions—which, as pointed out, are equivalentto the
function completely explicit. A connection between 2d random walks model and, after Poissonization, to the
Yang—Mills on the torus and topological strings has re- plaquette model of QCB—to compute the prepoten-
cently been pointed out if25]. tial of ' =2 SYM theory.

We saw that the matrix model of Chern—Simons Another interesting question is whether 2d Yang—
theory ons® naturally arises in the composition law of Mills and lattice QCD, and their respective third-
probabilities. Indeed, since we are dealing with contin- order phase transitions, have string theory interpre-
uous paths it seems that the matrix model formulation tations. In[37] it was shown that the QCDplaque-
of Chern—Simons theory is the most natural one for tte model can be used to obtain t§&/(2) N = 2
Brownian motion. Yet from the point of view of the  Seiberg—Witten solutionbtaking a double scaling
WZW model one naturally gets sums over represen- limit. In particular, a local Calabi—-Yau geometry that
tations rather than integrals. At the level of the inter- engineers this curve was found. In this case, it was ar-
mediate states, there is a precise way in which both gued that the phase transition plays no rold¢38i, 2d
approaches are equivaldB]. In Chern—Simons the-
ory the representations are integrable, and from the
Brownian motion point of view these correspond to
special points on the line. We can deal more gener- 4 This analytic continuation is a subtle issue that we hope to get
ally with arbitrary points by using characters. It would  back to in the future.
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Yang—Mills on a Riemann surface was obtained by
wrapping D6 branes ofi* x ¥.

We saw that the Gross-Witten phase transition (19

does play a role in the context of the shrinking two-

dimensional Young tableau. It was related to the non-

differentiability of the limiting shape. It would be in-

teresting to see whether such phase transitions are

present and play any role for the topological vertex.
Let us also mention that Card$9] has recently

found a remarkable connection between a system

of N non-intersecting Brownian motions (described
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